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ABSTRACT

Particulate matter with an aerodynamic diameter less than or equal to 2.5mm (PM2.5) is a critical air

pollutant with important impacts on human health. It is essential to provide accurate air quality forecasts to

alert people to avoid or reduce exposure to high ambient levels of PM2.5. The NOAA National Air Quality

Forecasting Capability (NAQFC) provides numerical forecast guidance of surface PM2.5 for the United

States. However, the NAQFC forecast guidance for PM2.5 has exhibited substantial seasonal biases, with

overpredictions in winter and underpredictions in summer. To reduce these biases, an analog ensemble bias

correction approach is being integrated into the NAQFC to improve experimental PM2.5 predictions over the

contiguousUnited States. Bias correction configurationswith varying lengths of training periods (i.e., the time

period over which searches for weather or air quality scenario analogs are made) and differing ensemble

member size are evaluated for July, August, September, and November 2015. The analog bias correction

approach yields substantial improvement in hourly time series and diurnal variation patterns of PM2.5 pre-

dictions as well as forecast skill scores. However, two prominent issues appear when the analog ensemble bias

correction is applied to the NAQFC for operational forecast guidance. First, day-to-day variability is reduced

after using bias correction. Second, the analog bias correction method can be limited in improving PM2.5

predictions for extreme events such as Fourth of July Independence Day firework emissions and wildfire

smoke events. The use of additional predictors and longer training periods for analog searches is recom-

mended for future studies.

1. Introduction

Particulate matter with aerodynamic diameter less

than or equal to 2.5mm (PM2.5) and ground ozone (O3)

are the two major air pollutants in the United States.

Exposure to high levels of ambient PM2.5 may pose

significant health risks for people with heart or lung

disease, older adults, and children (Brook et al. 2004;

Nel 2005). For example, there are about 130 000 cases of

premature mortality attributable to PM2.5 pollution

each year in the United States (Fann et al. 2012). To

protect human health, the U.S. Environmental Pre-

diction Agency (EPA) established the National Ambi-

ent Air Quality Standards (NAAQS) for PM2.5 in 1997

and lowered the NAAQS in 2006 and 2012, respectively.

The current NAAQS for 24-h averaged PM2.5 concen-

tration is 35mgm23 while for annually averaged PM2.5

the concentration is 12mgm23. According to the moni-

toring reports, many counties in the United States vio-

lated the new NAAQS of PM2.5 (EPA 2015). Thus, it is

important to provide numerical forecast guidance as a
Corresponding author e-mail: Jianping Huang, jianping.huang@

noaa.gov

APRIL 2017 HUANG ET AL . 407

DOI: 10.1175/WAF-D-16-0118.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (http://www.ametsoc.org/PUBSCopyrightPolicy).

mailto:jianping.huang@noaa.gov
mailto:jianping.huang@noaa.gov
http://www.ametsoc.org/PUBSCopyrightPolicy
http://www.ametsoc.org/PUBSCopyrightPolicy
http://www.ametsoc.org/PUBSCopyrightPolicy


basis for alerting the public to avoid or reduce exposure

to unhealthy levels of PM2.5.

The goal of the National Oceanic and Atmospheric

Administration (NOAA) National Air Quality Fore-

casting Capability (NAQFC) is to provide timely and

accurate operational numerical guidance for surface O3

and PM2.5 concentrations. The NAQFC was established

by NOAA in partnership with the EPA to provide

ozone and particulate matter pollutant forecasts. The

capability was initially deployed in 2004 to provide

surface ozone operational forecast guidance for the

northeastern United States (Otte et al. 2005). The ca-

pability for providing surface ozone operational fore-

casts was expanded to the conterminous United States

(CONUS) in 2007, Hawaii in 2009, and Alaska in

2010 (Stajner et al. 2012). Nationwide real-time de-

velopmental PM2.5 forecast guidance has been provided

from the operational NAQFC system since January

2015. This guidance exhibits substantial seasonal biases:

PM2.5 is usually underpredicted in summer and over-

predicted in winter as compared with AirNow obser-

vational data (Stajner et al. 2012; Lee et al. 2017).

Uncertainties in emission inventories, meteorological

inputs, and air quality models may contribute to the

biases in model predictions of airborne chemical species

and particulate matter. Improving NAQFC PM2.5

forecast skill is imperative to ensuring its readiness for

operational use.

While many research efforts have been devoted to

improving the core chemical, meteorological, and

emissions model components, postprocessing ap-

proaches such as bias correction provide a comple-

mentary pathway to refine forecast products. Bias

correction approaches range from complex statistical

regression techniques to subjective corrections. Bias

correction methods have been widely used in numerical

weather forecasting (e.g., Glahn and Lowry 1972;

Hamill and Whitaker 2006; Delle Monache et al. 2011,

2013; Cui et al. 2012; Durai and Bhradwaj 2014; Glahn

2014; Jo and Ahn 2015; Zhu and Luo 2015) and air

quality forecasting (e.g., Delle Monache et al. 2006,

2008, 2011; Kang et al. 2008, 2010; Wilczak et al. 2006;

Djalalova et al. 2010). These studies demonstrate that

both numerical weather and air quality forecasts are

improved substantially compared with model raw fore-

casts. Recently, Djalalova et al. (2015) evaluated bias

correction methods for improving the NAQFC PM2.5

predictions over the CONUS. They tested several

postprocessing techniques, which include a 7-day run-

ning mean bias correction, a Kalman filter (KF) applied

to standard time series data, an analog ensemble, KF

applied to the series of ordered analog forecasts

(KFAS), and KF applied to analog time series (KFAN).

All of these bias correction approaches show strong

improvement compared with theNAQFC raw forecasts.

In this study, an analog ensemble bias correction ap-

proach is integrated into the operational NAQFC real-

time system for improving the Community Multiscale

Air Quality (CMAQ)model predictions of PM2.5. In the

study by Djalalova et al. (2015), a full year’s worth of

historical model predictions was used to identify 10 an-

alog cases for each forecast, which were then used to

determine PM2.5 forecast biases. Given the time limi-

tations of real-time forecast product delivery, the con-

figuration used by Djalalova et al. (2015) for bias

corrections needs to be optimized without degrading

performance. The goals of this study are to integrate the

bias correction approach into theNAQFC system and to

identify a practical configuration for bias correction us-

ing the most recent version of NAQFC. The bias cor-

rection results are compared with the model raw

forecasts and evaluated with EPA AirNow observa-

tional data (http://www.airnow.gov). The performance

of the analog ensemble bias correction approach is evalu-

atedduringdifferent seasonalmonths in 2015. Furthermore,

the performance during several high PM2.5 concentration

events such as wildfire episodes is discussed to demonstrate

the challenges encountered when using analog ensemble

bias correction during rare high-impact events.

2. Methods

a. NAQFC and configurations

The NAQFC is an offline meteorology–chemistry

coupling forecasting system. The NOAA North Amer-

ican Model Forecast System (NAM) Nonhydrostatic

Multiscale Model with Arakawa B grid staggering

(NMMB; Janjić and Gall 2012) is linked with the EPA’s

CMAQ model (Byun and Schere 2006) to provide pre-

dictions of spatially and temporally varying concentra-

tions of gaseous and aerosol air pollutants for theUnited

States. Currently, the NAQFC provides twice-daily 48-h

forecasts at 0600 and 1200 UTC for the CONUS,

Alaska, and Hawaii.

As illustrated in Fig. 1, NMMB provides hourly me-

teorological inputs to drive CMAQ. The NMMB pro-

vides 84-h operational weather forecast guidance for

the United States at a horizontal resolution of 12 km.

The EPA’s CMAQ V4.6 with the Carbon Bond–2005

(CB05) gas-phase chemical mechanism and aerosol

module version 4 (AERO-IV) has been modified to

provide updated NAQFC operational ozone and ex-

perimental PM2.5 predictions since January 2015. The

NAQFC produces ozone and PM2.5 predictions for

the CONUS, Alaska, and Hawaii domains at 12-km
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horizontal grid spacing. The Prdgen and PREMAQ

(preprocessor of CMAQ) customized interface pro-

cessors handle horizontal map projection trans-

formation from the NMMB B grid to the CMAQ C grid

and vertical level coupling from the NMMB’s hybrid

sigma-pressure layers (i.e., sigma layers in the bottom

and pressure layers in the top) to the CMAQ’s sigma

layers, respectively (Otte et al. 2005). The PREMAQ

processor has been modified from the Meteorology–

Chemistry Interface Processor (MCIP) of the CMAQ

modeling system (Otte and Pleim 2010) by adding sev-

eral new features. In particular, PREMAQ recalculates

several important meteorological input fields such as the

planetary boundary layer (PBL) height, eddy diffusivity,

and cloud parameters from the NMMB outputs. It

also computes deposition velocity, photolysis rate, and

emission rates for CMAQ.

The NOAAEnvironmentalModeling System (NEMS)

Global Forecast System (GFS) Aerosol Component

(NGAC) provides dynamic lateral boundary conditions

of dust-related aerosol species to the CMAQ runs. The

simulations from the Goddard Earth Observing Sys-

tem (GEOS) with the Chemistry Component (GEOS/

Chem) modeling system are used to generate lateral

boundary conditions of gas-phase and other aerosol-

phase chemical species to the CMAQ.

The emission inputs for NAQFC are processed in two

different ways, depending on the nature of the emission

sources and their sensitivity to meteorology (Pan et al.

2014; Tong et al. 2015). Anthropogenic sources in-

cluding area, mobile, and point sources are obtained

fromNorthAmerican environmental agencies. TheU.S.

emission sources are based on a mixture of the EPA

National Emission Inventories (NEI) for 2005 and 2011.

Most sectors in NEI 2011 are used in this study except

for mobile sources and a few area sources (e.g., ocean-

going ship emissions) that are associated with high

uncertainties or require inline emission modeling capa-

bility, which is not used in this version of CMAQ. An-

thropogenic sources for the Canadian part of the domain

are based on the 2006 Emission Inventories compiled by

Environment Canada, and sources for the Mexican part

of the domain come from the 2012 Mexico National

Emissions Inventories. These inventory data are pro-

cessed using the Sparse Matrix Operator Kernel Emis-

sions (SMOKE) modeling system (Houyoux et al. 2000)

to represent monthly, weekly, diurnal, and holiday/

nonholiday variations that are specific for each year.

Both wind-blown dust and wildfire emissions are in-

cluded in the 2015 operational NAQFC system to ac-

count for their contributions to PM2.5 predictions (Lee

et al. 2017). For the wildfire smoke emissions, fire points

and smoke plume locations are identified by theNOAA/

National Environmental Satellite, Data, and In-

formation Service (NESDIS) Hazard Mapping System

(HMS) from satellite retrievals and human analysis

(Ruminski et al. 2006). The HMS fire smoke products

are processed by the U.S. Forest Service BlueSky

framework modeling system (O’Neill et al. 2009; Larkin

et al. 2009) to produce near-real-time wildfire smoke

emissions for the CMAQ.

This study is focused on the NAQFC CONUS do-

main, which covers the CONUS, as well as parts of

southern Canada and northern Mexico. There are 35

s vertical levels that extend from the surface to 100hPa,

with the first 14 layers within the lowest 2 km of the at-

mosphere. The first layer of CMAQ is defined at the

height of 39m above ground level (AGL). The photol-

ysis rate of organic nitrate (NTR) is increased by 10-fold

within the CB05 gas-phase chemical mechanism to ac-

celerate NTR removal (Saylor and Stein 2012; Canty

et al. 2015). The modification typically shortens the

predicted life of NTR in CMAQ from about 1 week to

approximately 1 day (Pan et al. 2014). This reduces the

overprediction of surface O3 and has a minor impact on

PM2.5 prediction. A minimum PBL height of 50m is

employed to avoid excessive suppression of vertical

diffusive mixing. More details about modifications to

CMAQ and updates to emission inventories were given

by Lee et al. (2017).

b. Analog ensemble bias correction

The analog ensemble approach, originally developed

for improving numerical weather predictions, is in-

tegrated into the NAQFC system for PM2.5 forecast bias

correction. The analog ensemble method is based on the

assumption that, if the climate is relatively stable, model

forecast errors in past similar weather scenarios (or an-

alogs) can be used to statistically correct current nu-

merical forecasts (Hamill and Whitaker 2006). The key

FIG. 1. Flowchart of the NAQFC in the United States.
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to this approach is in determining a suitable metric for

identifying analogs from the historical dataset. The

metric used here follows Delle Monache et al. (2011):
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where Ft is the forecast at the future time t; At0 is an

analog forecast at the past time t0; Ny is the number of

variables that are used for the analog search (Ny 5 4 in

this study); wi and sfi represent the weight and standard

deviation of the ith variable, respectively; ~t is half of the

time window over which the metric is computed (~t5 1 h

in this study); and Ai,t01j and Fi,t1j represent the analog

and forecast for the ith variable at time t0 1 j and t 1 j,

respectively. Following the study of Djalalova et al.

(2015), PM2.5, 2-m temperature, 10-m wind speed, and

10-mwind direction with the sameweight are used in the

calculation of the metric with Eq. (1).

Analog ensemble bias correction is accomplished

through amultiple-step process. First, the NAMmodel’s

meteorological variables (e.g., temperature, wind speed/

direction) and the CMAQ model’s air quality variables

(i.e., PM2.5) are interpolated to the AirNow observa-

tional sites to form the set of analog predictors. Second,

analog members are identified from past forecast time

series based on the metric calculated with Eq. (1) and,

then, are ranked according to their similarity with the

current forecast. Third, forecast biases are computed

between the analog ensemble mean at the AirNow ob-

servational sites and then spread to the entire CMAQ

grids. The spreading technique is based on an eight-pass

Barnes-type iterative objective analysis scheme, which is

described in detail by Djalalova et al. (2015). The last

step is to correct the future CMAQ raw forecasts with

the historical analogs’ forecast biases across the entire

CMAQ grid.

It is noted that the length of the training period and

the number of analog ensemble members are the two

factors with substantial impacts on the bias correction

results. This study evaluates the practical training period

and the number of analog ensemble members for the

bias-corrected NAQFC PM2.5 prediction.

c. Evaluation protocol

The NCEP Verification System (NVS) was originally

developed for evaluating numerical weather prediction

(NWP) model performance and modified for evaluation

of the NAQFC operational predictions of surface ozone

and experimental predictions of surface PM2.5. TheNVS

comprises four parts: editbufr, prepfits, gridobs, and the

Forecasting Verification System (FVS) (see Fig. 2).

Among these parts, editbufr reads and retains the

observations from prepbufr files that contain point

observations and quality control information, prepfit

interpolates model forecast data to the AirNow ob-

servational sites, and grid2obs generates a series of

Verification Statistics Data Base (VSDB) files, which

include partial sums for the calculation of various

statistics.

The FVS is used to compute traditional statistics in-

cluding root-mean-square error (RMSE), bias, and

correlation coefficients, and forecast skill scores like

critical success index (CSI), hit rate, probability of de-

tection (POD), and false alarm rate (FAR). The forecast

skill scores are defined as follow (Wilks 1995, 260–265):

CSI5
a

a1 b1 c
, (2)

hit rate5
a

a1 b
, (3)

POD5
a

a1 c
, and (4)

FAR5
b

a1 b
, (5)

where a denotes the number of occurrences when both

the forecast and the observed are above a given

threshold (i.e., both are ‘‘yes’’), b represents the number

of occurrences when the forecast is above but the ob-

served below the given threshold (i.e., forecast is ‘‘yes’’

but observed is ‘‘no’’), c denotes the number of occur-

rences of the forecast being below but the observed

above the given threshold (i.e., forecast is ‘‘no’’ but

observed is ‘‘yes’’), and d denotes occurrences where

both the forecast and observed values are below the

given threshold (i.e., both are ‘‘no’’). In this study, the

AirNow hourly mean surface PM2.5 observational data

FIG. 2. Flowchart of the NCEP Grib2obs Verification System used

for NAQFC performance evaluation.
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at 551 sites are used to evaluate the NAQFC perfor-

mance on PM2.5 predictions. The evaluated forecast

parameters include hourlymean, 24-h average, and daily

maximum 1-h average PM2.5 values. Eight thresholds

are employed in the calculations of skill scores for PM2.5.

They include 5, 10, 12, 15, 20, 25, 30, and 35mgm23.

3. Evaluation of the NAQFC PM2.5 predictions

The NAQFC monthly mean PM2.5 forecast biases for

six different subregions of the CONUS domain from

January 2009 to September 2015 are shown in Fig. 3. The

48-h forecasts at the 0600 and 1200 UTC cycles each day

are included in the calculation. The subregions include the

Pacific Coast, the Rocky Mountains, the Lower Middle,

the Upper Middle, the Southeast, and the Northeast. The

subregions are indicated by different colors in the map

included in Fig. 3. Substantial seasonal forecast biases

persisted over the past several years. The PM2.5 results

were overpredicted in late autumn (e.g., November) and

winter (i.e., December–February) but underpredicted in

summer (i.e., June–August). The monthly mean forecast

biases ranged from about29mgm23 in summer to about

10mgm23 in winter.

There are multiple likely reasons for the NAQFC

PM2.5 underpredictions in summer. The major plausible

reasons causing underpredictions of PM2.5 include 1) the

underestimate of primary PM2.5 emissions, 2) outdated

mobile emission inventories, 3) incorrect representation

of secondary organic aerosols (SOAs), 4) constant

climatological lateral boundary profiles except for dust-

related aerosol species, 5) uncertainty of meteorological

inputs related to meteorology–chemistry coupling (e.g.,

overpredicting the planetary boundary layer height

and eddy diffusivity), 6) exclusion of transboundary-

transported wildfire/smokes from Canada or Mexico,

and 7) the outdated BlueSky fire emission processing

system and the wildfire emissions not being used prop-

erly in the CMAQ.

The reasons causing the forecast biases vary from one

region to another. Our analyses indicate that SOAswere

not well simulated over the southeast United States

(Carlton et al. 2010); organic carbon (OC) and ele-

mentary carbon (EC) were underestimated over the

western United States; ammonium was underestimated

over the Rocky Mountains, the Lower Middle, and the

Upper Middle; and that wildfire/smoke emissions were

still underestimated over the Northwest regions by the

NAQFC during summer. The dust-storm-related emis-

sions were not treated appropriately in the NAQFC

over the Southwest region, such as in Arizona and Ne-

vada, during spring. Furthermore, the fugitive dust

emissions were significantly overestimated during win-

ter. Contributions from source groups and regions to the

ambient levels of primary and secondary PM2.5 can be

evaluated further through model analysis tools such as

the source apportionment method (Kwok et al. 2013).

In the current version of NAQFC, only NGAC-

predicted dust-related species are used to generate the

dynamically varying lateral boundary conditions for the

FIG. 3. Monthly mean forecast biases of the NAQFC in different subregions over the CONUS

from January 2009 through September 2015.
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NAQFC. Transboundary transport of wildfire and

smoke from Canada or biomass burning from Mexico

are not included. This could be another important rea-

son causing the PM2.5 underpredictions during the

wildfire/smoke active season. The full aerosols predicted

by the recently upgraded NGAC including wildfire

smoke and dust will be used to generate lateral bound-

ary conditions for the NAQFC predictions during the

future implementation.

Uncertainty of meteorological inputs (e.g., PBL

height) is another important factor in the winter over-

predictions. We note that positive forecast biases in the

winter months had in general decreased over the past

several years. For example, the forecast bias decreased

from about 10.0mgm23 in January 2009 to around

5.0mgm23 in January 2015. The improvement of PM2.5

predictions in winter was related to advancements of the

meteorological model (i.e., NMMB) and better esti-

mates of anthropogenic emissions that were made over

the past several years. The major changes and im-

provements of NMMB were described by Janjić and

Gall (2012). Further details about emissions updates

were given by Lee et al. (2017) and Tong et al. (2015).

It is noted that the underpredictions were worse in

summer 2015 than in the preceding years. Several fac-

tors were responsible for this larger forecast bias. The

first possible factor was that more and larger wildfires

occurred over the CONUS, especially in the north-

western United States and Canada in 2015 (see the

total burned areas online: https://www.nifc.gov/fireInfo/

fireInfo_stats_totalFires.html). The fire emissions were

still largely underestimated in the NAQFC although the

BlueSky fire emission modeling system with near-real-

time satellite-based fire informationwas implemented in

2015. An extreme example is shown in Fig. 4. The ob-

served PM2.5 in eastern Washington was larger than

250mgm23 (indicated by a dark purple circle) whereas

the predicted PM2.5 was less than 35mgm
23. In addition,

contributions of wildfire smoke from outside the CMAQ

domain were not considered.

The wildfire emissions used in the NAQFC were

provided by the U.S. Forest Service BlueSky fire emis-

sions modeling system (Larkin et al. 2009). The BlueSky

operational system used the previous day’s NOAA/

NESDISHMS fire information such as fire locations and

durations for the emission calculation during the

0600 UTC cycle run. The second factor could be related

to the incomplete inclusion of fire emission sources. For

instance, prescribed biomass burning such as debris

clearing and agricultural fire emissions were removed

from the emission inventories to avoid double counting

with the implementation of dynamically projecting these

FIG. 4. Overlaid plots of day 1 maximum 1-h average PM2.5 (mgm
23) over the northwestern United States on 22

Aug 2015 for the 0600 UTC cycle run; shown are base runs (left) without and (right) with bias correction (back-

ground colors, forecasts; dotted points, AirNow observations).

412 WEATHER AND FORECAST ING VOLUME 32

https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html
https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html


emissions using the HMS-BlueSky algorithm. More-

over, several other factors may cause uncertainties in

the emissions results, which include the plume rise

calculation algorithm, meteorological inputs, and the

detection of wildfire smoke under cloudy conditions.

The primary goal of this study is to evaluate whether

bias correction approaches can improve CMAQPM2.5

predictions given the uncertainties in the emissions

and meteorology.

Another feature worth noting is that the NAQFC

forecast biases showed different diurnal variation pat-

terns between winter and summer. Figure 5 indicates the

average diurnal forecast biases over the CONUS for the

1200 UTC cycle CMAQ runs in January and July 2015.

In January the monthly mean forecast bias ranged from

1.3 to 3.5mgm23 with the maximum forecast bias at

forecast hour 14, or 0200 UTC [i.e., 2100 eastern stan-

dard time (EST)]. Themaximumoverpredictions during

the nighttime were usually linked with underpredictions

of the PBL heights or the setting of typical minimum

PBL heights in the simulations. On the other hand, the

NAQFC showed negative PM2.5 forecast biases from

approximately 25.5 to 22.5mgm23 during July 2015.

The worst forecast bias occurred during the daytime

(i.e., the forecast hour 8, or 2000 UTC, or 1500 EST).

Underestimation of wildfire smoke emissions could be

one of the main reasons causing the underpredictions.

However, such underpredictions during the nighttime

could be compensated for by other factors such as me-

teorological inputs. Thus, further investigations are

needed in the future to identify the specific factors, in-

cluding emissions, chemistry, andmeteorological inputs,

and to quantify their relative contributions to the

forecast biases.

4. Testing of analog ensemble bias correction with
different configurations

The length of the training period and the number of

analog ensemble members are the two variable param-

eters for the analog ensemble bias correction approach

(Djalalova et al. 2015). As summarized in Table 1, three

sensitivity experiments were conducted to assess the

impact of the training period length and the number of

analog ensemble members on bias correction perfor-

mance, and to identify a practical configuration for real-

time operational applications.

Different bias correction configurations were evalu-

ated for each of the following four months: July, August,

September, and November in 2015. These months were

chosen to evaluate the analog ensemble bias correction

approach under different air quality scenarios. Among

them, July was the month in which PM2.5 was signifi-

cantly underestimated. August was the month during

which wildfires were very active, especially in the

northwestern United States. September was the transi-

tion period when the NAQFC PM2.5 predictions began

to show positive biases. Finally, November was the

month during which the NAQFC started to show sig-

nificant PM2.5 overprediction, especially over the east-

ern United States (EUS), which comprises the Lower

Middle, Upper Middle, Southeast, and Northeast

(shown in Fig. 3).

a. PM2.5 forecast guidance and bias correction in July
2015

Comparisons of PM2.5 among CMAQ raw and bias-

corrected forecast guidance for different analog en-

semble bias correction configurations over the western

United States (WUS, consisting of the Pacific Coast and

Rocky Mountain regions; Fig. 3) and EUS during July

2015 are shown in Fig. 6. Both WUS and EUS are

FIG. 5. Domain-averaged forecast bias diurnal variation of

NAQFCover theCONUSduring January and July 2015 (solid line,

January; dashed line, July).

TABLE 1. Summary of the NAQFC parallel run and three cases of

analog ensemble bias correction. Base case represents theCMAQraw

forecast. BC5E6M denotes the bias correction case using five en-

semble members and a 6-month training period; BC5E12M and

BC10E12M represent the bias correction cases with 12-month training

periods and with 5 and 10 ensemble members, respectively.

Expt

No. of analog

ensemble members

Length of training

period (months)

Base case None None

BC5E6M 5 6

BC5E12M 5 12

BC10E12M 10 12

APRIL 2017 HUANG ET AL . 413



verified separately as a result of the large discrepancy in

PM2.5 emission sources. Here, the PM2.5 was substantially

underpredictedby theNAQFCover both regions, butmore

strongly over theWUS.A large spike inPM2.5was observed

over both EUS and WUS on 5 July due to Independence

Day fireworks. The hourly averaged PM2.5 rose sharply to

approximately 47mgm23 over the EUS and approximately

35mgm23 over the WUS during the evening of 4 July and

returned to the normal levels late in the day on 5 July. The

NAQFC guidance failed to predict the event because the

firework emissions were not included in the current emis-

sion inventory. The approach was not able to capture the

event even though July data from the previous year were

included in the analog search. This is because the ensem-

ble members were dominated by analogs from other days

instead of 4 July. As illustrated in Eq. (1), the metric cal-

culation relied on three meteorological factors (i.e., 2-m

temperature, and 10-m wind direction and wind speed),

but the meteorological conditions on 4 and 5 July in the

previous year may not be similar to those in 2015.

FIG. 6. Comparisons among bias-corrected, raw forecast, and observed PM2.5 results for (a) time series of the 24th

forecast hour during the 1200 UTC cycle run over theWUS, (b) hourly time series over the EUS, (c) mean diurnal

variation over the WUS, (d) mean diurnal variation over the EUS, (e) hit rates for daily maximum 1-h PM2.5

concentration over theWUS, and (f) hit rates for daily maximum 1-h PM2.5 concentration over the EUS during July

2015 (BC5E6M, bias corrected with five members and a 6-month training period; BC5E12M, bias corrected with

fivemembers and a 12-month training period; BC10E12M, bias corrected with 10members and a 12-month training

period; Fcst, forecast; and Obs, observation).
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Overestimates of PM2.5 were seen in the bias-

corrected guidance for several days following 5 July.

The magnitude of the overestimate was reduced when

using a larger number of analog ensemble members,

but the duration of the overprediction was longer with

an increasing number of analog ensemble members

(see Figs. 6a,b). Most likely 5 July was selected as

one of the analog ensemble members in the following

several days and the magnitude of the overprediction

was reduced when more analog ensemble members

were used or when a longer training dataset was

available.

Monthly mean diurnal variations of PM2.5 over the

WUS and EUS in July 2015 are presented in Figs. 6c

and 6d, respectively. The raw NAQFC guidance failed

to simulate PM2.5 diurnal variation patterns in terms of

the magnitude and temporal phase for both subregions.

The worst underpredictions by raw forecasts were

found during the daytime, whereas the fewest under-

predictions appeared at night. All configurations of

the bias correction forecast guidance show excellent

agreement with observations for both magnitude

and phase.

Comparison of hit rates among three scenarios and

the base case at different thresholds are presented in

Figs. 6.e and 6f. A large increase of hit rate appeared at

thresholds below 20.0mgm23 over the WUS whereas a

relatively small increase occurred at the thresholds be-

low 15mgm23 over the EUS. Quantitative comparisons

of hit rate and other statistical evaluation parameters

among the base case and the three bias correction ex-

periments are shown in Table 2. All of the three bias

correction experiments show larger improvements over

the WUS than over the EUS. This is because the model

raw prediction biases over the WUS are significantly

larger than those over the EUS during wildfire/smoke

events. FAR is small and shows less change while both

the hit rate and POD are improved. In addition, it is

noticed that the reduction in the RMSE is much less

than that of the forecast biases.

Overall, the monthly mean diurnal variations and

forecast skill scores for the threshold of 15.0mgm23 and

lower are improved substantially (see Figs. 6e,f). How-

ever, it is still a challenge for extreme events like the

4 July fireworks case and for the thresholds around

35.0mgm23 or above in July.

b. PM2.5 forecast guidance and bias correction in
August 2015

August was an active time for wildfires across the

WUS and PM2.5 air quality model predictions can be

challenging given the uncertainties in wildfire smoke

emissions. Several wildfire events were observed over

the northwestern United States, with the largest events

occurring on 22–25 August. The observed hourly aver-

aged PM2.5 results reached up to approximately

40mgm23 over the WUS on 24 August (Fig. 7a). How-

ever, the NAQFC raw PM2.5 predictions were around

8mgm23 or less over the WUS. The PM2.5 values in-

creased to about 16mgm23 with bias correction using

five members and longer training periods (i.e., 6 or

12 month), but did not reach the observed PM2.5 levels.

Three causes for the underpredictions of PM2.5-

associated wildfires by the analog ensemble bias cor-

rection approach are discussed. First, the variables (i.e.,

PM2.5, 2-m temperature, and 10-mwind speed and wind

direction) used to determine the analogs may not rep-

resent the most important indicators for wildfire epi-

sodes while some important fire-related indicators may

not be included in the analog search. For example, high

concentrations of OC are usually associated with bio-

mass burning, and the ammonium sulfate [(NH4)2SO4]

mainly comes from anthropogenic sources (Hand et al.

2011). Thus, the ratio of OC to ammonium sulfate is a

good indicator for distinguishing wildfire sources of

PM2.5 from anthropogenic emissions. However, this

parameter was not included in the analog search. An-

other important factor is that more and larger wildfires

occurred over the CONUS, as discussed above. If the

training period is very different from the period for

TABLE 2. A comparison of standard statistical evaluation parameters and forecast skill scores with a PM2.5 threshold above 12mgm23

among the three bias correction scenarios and the base case over the EUS and WUS during August 2015, where Cr is the correlation

coefficient.

CMAQPARA BC5E6M BC5E12M BC10E12M

WUS EUS WUS EUS WUS EUS WUS EUS

Cr 0.43 0.36 0.49 0.48 0.47 0.47 0.47 0.47

Bias 27.14 0.42 22.63 0.31 21.31 0.33 23.4 0.37

RMSE 16.46 5.98 14.58 5.07 14.67 5.01 14.87 5.01

CSI 0.20 0.24 0.49 0.28 0.56 0.31 0.42 0.23

Hit rate 0.27 0.74 0.28 0.75 0.31 0.76 0.29 0.75

POD 0.21 0.23 0.58 0.33 0.69 0.38 0.48 0.27

FAR 0.00 0.04 0.06 0.02 0.07 0.02 0.03 0.01
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which analogs are searched, it becomes more chal-

lenging to find good matches. Finally, when a fire first

erupted and affected the measured PM2.5 at an AirNow

observation site, there may be no historical forecasts

for that site that include fire-associated forecast biases,

and therefore none of the selected analogs were used to

correct the model for the presence of fire, indicating a

need of a longer training period for analog searches or

for the use of other indicators. Thus, in Fig. 7a it was

only after 26 August, when the high fire-related PM2.5

was present for nearly a week, that the bias correction

scheme finally was able to accurately increase the

forecast PM2.5 to match the observed values.

In contrast, the NAQFC predictions showed much

larger variability than the observations over the EUS in

August (Fig. 7d). Here, underpredictions and over-

predictions were observed during daytime and nighttime,

respectively. In contrast to the WUS, the influence of

wildfire smoke was much smaller in the EUS during this

period. The analog ensemble bias correction approach

did not capture some of the day-to-day variability as well

as the raw forecast guidance did over the EUS (Fig. 7b).

The forecast skill quantified by hit rates was clearly

increased over the WUS (Fig. 7e). Among the results,

the BC5E12M scenario (solid red, with five ensemble

members and a 12-month training period) showed the

best performance over the WUS. However, both the

NAQFC forecast guidance and the bias correction ap-

proach require further study for the predictions during

wildfire-smoke-driven PM2.5 events.

FIG. 7. As in Fig. 6, but during August 2015.
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c. PM2.5 forecast guidance and bias correction in
September 2015

For September, a typical transition month, the

NAQFC predictions showed opposite patterns of be-

havior for the WUS and EUS (Fig. 8). The PM2.5 was

underpredicted by the NAQFC predictions across the

WUS, but overpredicted over the EUS. The BC5E12M

runs (red lines) showed excellent agreement with the

observed hourly variations (Figs. 8a,b) over the WUS,

although a wildfire event on 13–14 September was still

underpredicted by both the raw and bias-corrected

forecasts. Overcorrections by the bias correction ex-

periments were seen in the hourly time series during the

first week of September (see Fig. 8a), especially for the

case of BC10E12M (using 10 members; green line). This

was because the BC10E12M case had themost members

and therefore was likely choosing more recent fire days

for its analogs that were not ideal matches.

All bias correction experiments showed a substantial

increase in the hit rate for thresholds below 15mgm23 in

the WUS (Fig. 8e) and moderate change for thresholds

above 15mgm23 in the EUS (Fig. 8f). The configura-

tions with 5 members (i.e., BC5E6M and BC5E12M)

showed higher hit rates than the configurations with 10

analog ensemble members. The readers are reminded

that the performance of the configurations with 10 an-

alog ensemblemembers could be improved further if the

FIG. 8. As in Fig. 6, but during September 2015.
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training period were to be extended (to, say, 2;3 yr) but

this is a considerable burden when creating real-time

operational forecasts since CPU time is limited, and

forecast models are generally updated on at least an

annual basis. Little change in CSI skill score was seen

when the daily 1-h maximum PM2.5 was lower than

15mgm23, but the bias-corrected CSI was lower than

that of the model raw forecast for thresholds of

15mgm23 and above, especially for the configuration

with 10 ensemble members and a 1-yr training period

(figure not shown). A slight degradation in CSI was

found over the EUS (not shown). This was because the

PODs decreased for the higher-threshold events after

the bias correction was applied. Similar to July and

August, significant reductions in the bias were seen over

both the EUS and WUS in September but this was not

the case for RMSE.

d. PM2.5 forecast guidance and bias correction in
November 2015

Wildfires episodes were less frequent in November.

As a result, the NAQFC predictions showed better

agreement with the observations over the WUS (see

Fig. 9a). As seen in Figs. 9c and 9d, the diurnal variations

improved substantially with bias correction in the EUS,

but had only a slight impact in the WUS, where it most

notably helped correct the hourly timing of the mini-

mum and maximum PM2.5 values.

A large increase in the hit rate was seen for all the

thresholds over the WUS and for thresholds above

12.0mgm23 over the EUS. Over the EUS there was a

small degradation in the bias-corrected CSI values for

larger CSI thresholds of 12mgm23 and above (Table 3).

Overall, the performance of bias correction in Novem-

ber was similar to that in July and September. There-

fore, the combination of PM2.5, temperature, and wind

speed and wind direction was adequate to identify an-

alogs for bias correction except for infrequent, but im-

portant, high-PM2.5 events such as wildfires.

5. Discussion and future direction

Substantial improvement in the skill of PM2.5 pre-

dictions is demonstrated with the analog ensemble bias

correction approach. However, this method has limita-

tions for handling extremely high concentration events

such as the Independence Day fireworks, wildfires, and

wind-blown dust episodes. The rarer the event, the

longer the training dataset needs to be to find good an-

alogs, or more effective methods are needed to de-

termine analogs. Currently, PM2.5 is combined with

three meteorological variables (i.e., 2-m temperature,

and 10-m wind speed and wind direction) for identifying

appropriate analog ensemble members; however, other

parameters could be considered (e.g., model-predicted

organic carbon to determine wildfire-smoke-influenced

episodes). Moreover, as Junk et al. (2015) have shown,

optimal weighting of the analog predictors (computed

independently for every location and possibly forecast

lead time) may help improve considerably the analog

ensemble performance for PM2.5 predictions. The latter

is left to future investigations.

The ratio of OC to ammonium sulfate can also be a

potential indicator for distinguishing wildfire emissions

from anthropogenic emissions. Inclusion of such a pa-

rameter in the analogmetric calculation could be helpful

for determining analog members used in the PM2.5 bias

correction algorithm. In addition, inclusion of fire im-

pacts on weather forecasts could provide more reason-

able meteorological fields for finding the best analogs

from the historical data.

For wind-blown dust events, soil moisture and surface

friction velocity are critical parameters for calculating

dust emissions. Inclusion of those dust-sensitive pa-

rameters may allow analog ensemble bias correction

approaches to better correct raw forecasts for dust

events.

The Independence Day firework event is a human

activity and PM2.5 concentrations do not have a strong

dependence on weather conditions. The analog en-

semble approach does not help unless the Fourth of

July weather from the previous year happens to be

similar to the current forecast. Inclusion of firework

emissions into the emission inventory would improve

PM2.5 predictions on 4 July. An alternative would be to

force the analog scheme to only use the previous (one

or more) 4 July cases as analogs, or delete 4 July from

the training data (in which case the forecast will have a

low bias on 4 July).

Results also show that day-to-day or week-to-week

variabilities are reduced in some instances after ap-

plying the analog ensemble bias correction approach.

The problem becomes more evident when the number

of analog ensemble members is increased and the

training period is short. This is to be expected when

using an ensemble mean approach as a bias correction.

By definition, the ensemble mean reduces the vari-

ability of the ensemble members given its smoother

estimate. Thus, more tests on appropriate ensemble

member numbers and longer training periods (e.g.,

2–3 yr) are needed for reinstating the day-to-day or

week-to-week variabilities of the bias-corrected

predictions.

Computational time is critical for real-time opera-

tional forecasts. The analog ensemble approach is

demonstrated as the first step for improving real-time
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PM2.5 predictions. According to the study of Djalalova

et al. (2015), bias correction with a Kalman filter applied

to the analog time series shows better performance

compared to the analog ensemble bias correction

approach. However, the KFAN algorithm requires

more computational resources than does the analog

ensemble when the length of the training period and the

number of analog ensemble members are increased.

TABLE 3. As in Table 2, but for November 2015.

CMAQPARA BC5E6M BC5E12M BC10E12M

WUS EUS WUS EUS WUS EUS WUS EUS

Cr 0.35 0.40 0.51 0.44 0.51 0.43 0.50 0.43

Bias 20.81 2.98 20.78 0.49 20.76 0.47 20.75 0.48

RMSE 8.76 7.55 7.02 4.89 7.33 4.85 7.24 4.86

CSI 0.38 0.23 0.41 0.27 0.41 0.29 0.39 0.27

Hit rate 0.73 0.76 0.77 0.83 0.77 0.83 0.77 0.83

POD 0.43 0.31 0.47 0.33 0.48 0.37 0.45 0.33

FAR 0.11 0.24 0.01 0.01 0.01 0.01 0.01 0.01

FIG. 9. As in Fig. 6, but during November 2015.
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KFAN will be tested for real-time forecast applications

when a parallelized version of this code becomes

available.

6. Summary and conclusions

In this study, a summary of the performance of the

NOAA National Air Quality Forecast Capability

(NAQFC) PM2.5 predictions with and without bias

correction is presented. A persistent seasonal bias is

noted over the past several years. Various efforts have

been made at NOAA to improve the NAQFC pre-

dictions of surface PM2.5, resulting in improved winter

PM2.5 predictions. However, underprediction in sum-

mer has not improved and was even worse in 2015 than

previous years. Out-of-date emission inventories could

be one of the major reasons, in addition to intense

wildfire activity during the summer of 2015.

To address these identified biases, an analog ensemble

bias correction is integrated into the NOAA NAQFC.

Tests of the analog ensemble approach with different

configurations have been completed to assess the impact

of training period length and number of analog members

on the analog ensemble bias correction’s performance

during July, August, September, and November 2015.

Results show that the diurnal variation patterns are im-

proved greatly with all the configurations. The sensitivity

run BC5E12M (using five analog ensemble members

and a 12-month training period) provides the best per-

formance overall. This configuration has been selected for

the analog ensemblebias correction approach for the 2016

NAQFC operational implementation at NOAA/NCEP.

This study also highlights the limitation of the analog en-

semble bias correction approach on improving PM2.5 pre-

dictionsduring infrequent, but extremelyhigh concentration,

PM2.5 episodes, such as the Fourth of July Independence

Day fireworks and wildfire events. A more robust way of

identifying analogs is critical to improving the analog en-

semble bias correction approach. For example, including the

ratio of organic carbon to ammonium sulfatemight improve

the search for good analogs during wildfire emission-type

events. Soil moisture and surface friction velocity could be

included for identifying better analogs for dust-storm cases.

Overall, this study highlights the strengths and weaknesses

of the analog ensemble approach, and provides direction

for our next steps as well as future research.
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Janjić, Z., and R. Gall, 2012: Scientific documentation of the NCEP

Nonhydrostatic Multiscale Model on B grid (NMMB). Part 1

Dynamics. NCAR Tech. Note NCAR/TN-4891STR, 80 pp.

[Available online at https://opensky.ucar.edu/islandora/object/

technotes%3A502.]

Jo, S., and J. Ahn, 2015: Improvement of CGCM prediction for

wet season precipitation over Maritime Continent using a

bias correction method. Int. J. Climatol., 35, 3721–3732,

doi:10.1002/joc.4232.

Junk, C., L. Delle Monache, S. Alessandrini, L. von Bremen, and

G. Cervone, 2015: Predictor-weighting strategies for proba-

bilistic wind power forecasting with an analog ensemble.

Meteor. Z., 24, 361–379, doi:10.1127/metz/2015/0659.

Kang, D., R. Mathur, S. T. Rao, and S. Yu, 2008: Bias adjustment

techniques for improving ozone air quality forecasts.

J. Geophys. Res., 113, D23308, doi:10.1029/2008JD010151.

——, ——, and ——, 2010: Real-time bias-adjusted O3 and PM2.5

air quality index forecasts and their performance evaluations

over the continental United States.Atmos. Environ., 44, 2203–

2212, doi:10.1016/j.atmosenv.2010.03.017.

Kwok, R. H. F., S. L. Napelenok, and K. R. Baker, 2013: Im-

plementation and evaluation of PM2.5 source contribution

analysis in a photochemical model. Atmos. Environ., 80, 398–

407, doi:10.1016/j.atmosenv.2013.08.017.

Larkin, N. K., and Coauthors, 2009: The BlueSky smoke modeling

framework. Int. J. Wildland Fire, 18, 906–920, doi:10.1071/

WF07086.

Lee, P., and Coauthors, 2017: NAQFC developmental forecast

guidance for fine particulate matter (PM2.5).Wea. Forecasting,

doi:10.1175/WAF-D-15-0163.1, in press.

Nel, A., 2005: Air pollution-related illness: Effects of particles.

Science, 308, 804–806, doi:10.1126/science.1108752.

O’Neill, S. M., and Coauthors, 2009: Regional real-time smoke

prediction systems. Wildland Fires and Air Pollution: De-

velopments in Environmental Science, A. Bytnerowicz et al.,

Eds., Developments in Environmental Science, Vol. 8,

Elsevier, 499–534.

Otte, T. L., and J. E. Pleim, 2010: The Meteorology-Chemistry

Interface Processor (MCIP) for the CMAQmodeling system:

Updates throughMCIPv3.4.1.Geosci.Model Dev., 3, 243–256,
doi:10.5194/gmd-3-243-2010.

——, and Coauthors, 2005: Linking the eta model with the Com-

munity Multiscale Air Quality (CMAQ) modeling system to

build a national air quality forecasting system. Wea. Fore-

casting, 20, 367–384, doi:10.1175/WAF855.1.

Pan, L., D. Tong, P. Lee, H.-C. Kim, and T. Chai, 2014: Assessment

of NOx and O3 forecasting performances in the U.S. National

Air Quality Forecasting Capability before and after the 2012

major emissions updates. Atmos. Environ., 95, 610–619,

doi:10.1016/j.atmosenv.2014.06.020.

Ruminski, M., S. Kondragunta, R. Draxler, and J. Zeng, 2006:

Recent change to theHazardMapping System. Preprints, 15th

Int. Emission Inventory Conf.: Reinventing Inventories—New

Ideas in New Orleans, New Orleans, LA, EPA. [Available

online at http://www.epa.gov/ttn/chief/conference/ei15/session10/

ruminski.pdf.]

Saylor, R. D., and A. F. Stein, 2012: Identifying the causes of dif-

ferences in ozone production from CB05 and CBMIV chem-

ical mechanisms.Geosci. Model Dev., 5, 257–268, doi:10.5194/

gmd-5-257-2012.

Stajner, I., P. Davidson, D. Byun, J. McQueen, R. Draxler,

P. Dickerson, and J. Meagher, 2012: US National Air Quality

Forecast Capability: Expanding coverage to include particu-

late matter. Air Pollution Modeling and Its Application XXI,

D. G. Steyn and S. T. Castelli, Eds., NATO Science for Peace

and Security Series C: Environmental Security, Springer, 379–

384, doi:10.1007/978-94-007-1359-8_64.

Tong, D. Q., and Coauthors, 2015: Long-term NOx trends over

large cities in the United States during the great recession:

Comparison of satellite retrievals, ground observations, and

emission inventories.Atmos. Environ., 107, 70–84, doi:10.1016/

j.atmosenv.2015.01.035.

Wilczak, J., and Coauthors, 2006: Bias-corrected ensemble and

probabilistic forecasts of surface ozone over eastern North

America during the summer of 2004. J. Geophys. Res., 111,

D23S28, doi:10.1029/2006JD007598.

Wilks, D., 1995: Statistical Methods in the Atmospheric Sciences.

Academic Press, 467 pp.

Zhu, Y., and Y. Luo, 2015: Precipitation calibration based on the

frequency-matchingmethod.Wea. Forecasting, 30, 1109–1124,

doi:10.1175/WAF-D-13-00049.1.

APRIL 2017 HUANG ET AL . 421

http://dx.doi.org/10.1175/MWR3237.1
http://dx.doi.org/10.1175/MWR3237.1
http://vista.cira.colostate.edu/Improve/wp-content/uploads/2016/04/Cover_TOC.pdf
http://vista.cira.colostate.edu/Improve/wp-content/uploads/2016/04/Cover_TOC.pdf
http://vista.cira.colostate.edu/Improve/wp-content/uploads/2016/04/Cover_TOC.pdf
http://dx.doi.org/10.1029/1999JD900975
https://opensky.ucar.edu/islandora/object/technotes%3A502
https://opensky.ucar.edu/islandora/object/technotes%3A502
http://dx.doi.org/10.1002/joc.4232
http://dx.doi.org/10.1127/metz/2015/0659
http://dx.doi.org/10.1029/2008JD010151
http://dx.doi.org/10.1016/j.atmosenv.2010.03.017
http://dx.doi.org/10.1016/j.atmosenv.2013.08.017
http://dx.doi.org/10.1071/WF07086
http://dx.doi.org/10.1071/WF07086
http://dx.doi.org/10.1175/WAF-D-15-0163.1
http://dx.doi.org/10.1126/science.1108752
http://dx.doi.org/10.5194/gmd-3-243-2010
http://dx.doi.org/10.1175/WAF855.1
http://dx.doi.org/10.1016/j.atmosenv.2014.06.020
http://www.epa.gov/ttn/chief/conference/ei15/session10/ruminski.pdf
http://www.epa.gov/ttn/chief/conference/ei15/session10/ruminski.pdf
http://dx.doi.org/10.5194/gmd-5-257-2012
http://dx.doi.org/10.5194/gmd-5-257-2012
http://dx.doi.org/10.1007/978-94-007-1359-8_64
http://dx.doi.org/10.1016/j.atmosenv.2015.01.035
http://dx.doi.org/10.1016/j.atmosenv.2015.01.035
http://dx.doi.org/10.1029/2006JD007598
http://dx.doi.org/10.1175/WAF-D-13-00049.1

